Week of October 5, 2015

Monday

October 5, 2015

Do Now: Monday

 Write down your homework. (Leave your agenda out and open)

 Put your name, student # & class on your "Do Now" worksheet

3. Write down 2 facts you heard from the video.

Stations

Station 1: Gizmo

- Put your name, student # & class on your packet.
- Before going on Gizmo, complete the Prior Knowledge Questions
- Once logged onto Gizmo, Complete the Gizmo Warm-Up
 Do not go any farther

Station 2: Foldable

- Organize papers in Binder
- **Complete the Crest Portion of your Foldable**

Materials Needed:

1 Chromebook / Pair Gizmos – Packet Pencil

Materials Needed:

Binder Foldable Colored Pencils Pencil

Tuesday

October 6, 2015

Do Now: Tuesday

- 1. Write down 2 new facts that you heard or noticed this time.
- 2. List 3 ways waves may effect your life.

Stations

Station 1: Gizmo

- Log into Gizmo
- **Complete Activity A: Measuring Waves**

Materials Needed:

1 Chromebook / Pair Gizmos – Packet Pencil

Station 2: Foldable

Complete the rest of your foldable of your Foldable Materials Needed:

Foldable Vocabulary Sheet Colored Pencils Pencil

Wednesday

October 7, 2015

Do Now: Wednesday

1. Read the article about the sport of surfing.

2. How is surfing connected to our study of waves?

Stations

īme's u

Station 1: Gizmo

- Gizmos: <u>www.explorelearning.com</u>
- **Complete Activity B: Wave Dynamics**

Materials Needed:

1 Chromebook / Pair Gizmos – Packet Pencil

Station 2: Foldable

Materials Needed:

Foldable Colored Pencils Rubric Practice Sheet Pencil

- Finish Foldable and Turn in with Filled out Rubric
- **Complete Practice Sheet**

Thursday

October 8, 2015

Do Now: Thursday

How would you teach a 4th grader what the crest and trough of a wave is?

Stations

īme's u

Station 1: Gizmo

- Gizmos: <u>www.explorelearning.com</u>
- **Complete Activity C: Combined Waves**
- Make sure all assignments are complete for Gizmos

Materials Needed:

1 Chromebook / Pair Gizmos – Packet Pencil

Station 2: Vocabulary

Materials Needed:

Pencil Practice Worksheet Vocabulary Chart

- **G** Finish Practice Worksheet from yesterday
- Complete the Frayer Vocabulary Chart
 Definitions have already been filled in. Use your knowledge from Gizmos to help with examples.

Friday

October 9, 2015

Do Now: Friday

How can you compare the different parts of a wave?
 (Create your own trick to remember them.)

What is a Wave?

A <u>wave</u> is any disturbance that transfers energy through matter or space.

A 1923 DIME & www.masaghotos.com

Waves are created when a source creates a vibration.

Waves are moving energy!

The energy causes materials to vibrate.

Waves only carry <u>energy</u>, not matter!

How do waves travel?

The matter through which a wave travels is called a MEDIUM.

The sound produced by the bell cannot be heard since sound cannot travel through a vacuum.

Transverse Waves:

waves in which the particles vibrate in an up and down motion ex: light waves

Longitudinal Waves:

waves in which the particles vibrate back and forth in compressional pulses ex: sound waves

Rarefaction

Movement of wave

Compression

Longitudinal Wave

Types of Waves

Waves can also be classified on if they need a medium or don't need a medium to travel...

Mechanical Waves

Mechanical Waves need a medium to travel through.

- Examples of Mechanical Waves: sound
- water ropes
- earthquakes
- tsunami waves

Mechanical Waves can be either Transverse or Longitudinal

Electromagnetic Waves

Electromagnetic Waves do NOT need a medium to travel through.

Examples of Electromagnetic Waves: x-rays

radio waves infrared radiation microwaves visible light

Electromagnetic Waves are ALWAYS transverse waves.

Electromagnetic Waves

Amplitude

<u>Amplitude</u> = wave height

Amplitude

larger amplitude = more energy

Wavelength

Wavelength = distance between 2 crests

or troughs

The wavelength can be measured from any point to the identical point on the next wave

Compression

Wavelength

Rarefaction

Wavelength

The human eyes can detect electromagnetic waves with a wavelength between 400 and 700 nanometers

Wavelength

shorter wave length = more energy

Frequency (Hertz/Hz)

Frequency = the number of waves that pass by a point each second

higher frequency = more energy

Wave Speed

<u>Wave Speed</u> = speed at which waves travel through a medium

